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Option 1: Vectors

1 Four points have coordinates

A (3, 8, 27), B (5, 9, 25), C (8, 0, 1) and D (11, p, p),

where p is a constant.

(i) Find the perpendicular distance from C to the line AB. [5]

(ii) Find
−−→
AB ×

−−→
CD in terms of p, and show that the shortest distance between the lines AB and CD is

21|p − 5 |√
17p2 − 2p + 26

. [8]

(iii) Find, in terms of p, the volume of the tetrahedron ABCD. [4]

(iv) State the value of p for which the lines AB and CD intersect, and find the coordinates of the

point of intersection in this case. [7]

Option 2: Multi-variable calculus

2 In this question, L is the straight line with equation r=( 2

1

−1

)+ λ(−2

2

1

), and g(x, y, ß) = (xy+ ß2)ex−2y.

(i) Find
∂g

∂x
,

∂g

∂y
and

∂g

∂ß
. [4]

(ii) Show that the normal to the surface g(x, y, ß) = 3 at the point (2, 1, −1) is the line L. [4]

On the line L, there are two points at which g(x, y, ß) = 0.

(iii) Show that one of these points is P (0, 3, 0), and find the coordinates of the other point Q. [4]

(iv) Show that, if x = −2µ, y = 3 + 2µ, ß = µ, and µ is small, then

g(x, y, ß) ≈ −6µe−6. [3]

You are given that h is a small number.

(v) There is a point on L, close to P, at which g(x, y, ß) = h. Show that this point is approximately

(1
3
e6h, 3 − 1

3
e6h, −1

6
e6h). [2]

(vi) Find the approximate coordinates of the point on L, close to Q, at which g(x, y, ß) = h. [7]
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Option 3: Differential geometry

3 A curve C has equation y = x
1
2 − 1

3
x

3
2 , for x ≥ 0.

(i) Show that the arc of C for which 0 ≤ x ≤ a has length a
1
2 + 1

3
a

3
2 . [5]

(ii) Find the area of the surface generated when the arc of C for which 0 ≤ x ≤ 3 is rotated through

2π radians about the x-axis. [5]

(iii) Find the coordinates of the centre of curvature corresponding to the point (4, −2
3
) on C. [9]

The curve C is one member of the family of curves defined by

y = p2x
1
2 − 1

3
p3x

3
2 (for x ≥ 0),

where p is a parameter (and p > 0).

(iv) Find the equation of the envelope of this family of curves. [5]
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Option 4: Groups

4 The group F = {p, q, r, s, t, u} consists of the six functions defined by

p(x) = x q(x) = 1 − x r(x) =
1

x
s(x) =

x − 1

x
t(x) =

x

x − 1
u(x) =

1

1 − x
,

the binary operation being composition of functions.

(i) Show that st = r and find ts. [4]

(ii) Copy and complete the following composition table for F. [3]

p q r s t u

p p q r s t u

q q p s r u t

r r u p t s q

s s t q u r p

t t s u

u u r t

(iii) Give the inverse of each element of F. [3]

(iv) List all the subgroups of F. [4]

The group M consists of {1, −1, e
π
3 j

, e
−π

3 j
, e

2π
3

j
, e

−2π
3

j} with multiplication of complex numbers as its

binary operation.

(v) Find the order of each element of M. [4]

The group G consists of the positive integers between 1 and 18 inclusive, under multiplication

modulo 19.

(vi) Show that G is a cyclic group which can be generated by the element 2. [3]

(vii) Explain why G has no subgroup which is isomorphic to F. [1]

(viii) Find a subgroup of G which is isomorphic to M. [2]
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Option 5: Markov chains

This question requires the use of a calculator with the ability to handle matrices.

5 In this question, give probabilities correct to 4 decimal places.

An electronic control unit on an aircraft is inspected weekly, replaced if necessary, and is labelled A,

B, C or D according to whether it is in its first, second, third or fourth week of service.

In Week 1, the unit is labelled A.

At the start of each subsequent week, the following procedure is carried out.

When the unit is labelled A, B or C, it is tested; if it passes the test it is relabelled B, C or D

respectively; if it fails the test it is replaced by a new unit which is labelled A.

When the unit is labelled D, it is replaced by a new unit which is labelled A.

The probability that a unit fails the test is 0.16 when it is labelled A, 0.28 when it is labelled B,

and 0.43 when it is labelled C.

This situation is modelled as a Markov chain with four states.

(i) Write down the transition matrix. [2]

(ii) In Week 10, find the probability that the unit is labelled C. [3]

(iii) Find the week (apart from Week 1) in which the probabilities that the unit is labelled A, B, C, D

first form a decreasing sequence. Give the values of these probabilities. [3]

(iv) Find the probability that the unit is labelled B in Week 8 and is labelled C in Week 16. [4]

(v) Following a week in which the unit is labelled D, find the expected number of consecutive weeks

in which the unit is labelled A. [2]

(vi) Find the equilibrium probabilities that the unit is labelled A, B, C or D. [4]

An airline has 145 of these units installed in its aircraft. They are all subjected to the inspection

procedure described above, and may be assumed to behave independently.

(vii) In the long run, find how many of these units are expected to be replaced each week. [2]

A different manufacturer has now been chosen to make the units. The inspection procedure remains

the same as before, but the probabilities that the unit fails the test have changed. The equilibrium

probabilities that the unit is labelled A, B, C or D are now found to be 0.4, 0.25, 0.2 and 0.15

respectively.

(viii) Find the new probabilities that the unit fails the test when it is labelled A, B or C. [4]
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  1 (i) 5 2 42

AC AB 8 1 42

26 2 21

     
               
           

 
 

Perpendicular distance is 
AC AB

AB


 

  

                                

2 2 2

2 2 2

42 42 21 63

32 1 2
21

 
 

 


 

 
 
B2 
 
 
 
M1 
 
 
M1 
 
 
A1 
 5

 
 
Give B1 for one component correct 
 
 
 
 
 
 
Calculating magnitude of a vector 
product 
 
www 

 

OR 

3 2 8 2

8 0 . 1 0

27 2 1 2





      
              
             

 
M1

A1

 2(2 5) ( 8) 2( 2 26) 0          A1 ft

 6 [ F is (15, 14, 15) ]   

 CF 2 2 27 14 14 21     M1A1

  
Appropriate scalar product 
 
 

     (ii) 2 3 3 1

AB CD 1 2 4

2 1 2 3

p

p p

p p

     
               
            

 
 

5 3 1

AC . (AB CD) 8 . 2 4

26 2 3

p

p

p

   
          
       

  
 

5(3 1) 8( 2 4) 26(2 3) [ 21 105 ]p p p p         
2 2 2

2

AB CD (3 1) ( 2 4) (2 3)

17 2 26

p p p

p p

       

  

 

 

Distance is 
2

AC . (AB CD) 21 5

AB CD 17 2 26

p

p p

 


  

  

   

B1  
B1  
B1 
 
 
M1 
 
 
A1 ft 
 
B1 ft 
 
 
 
M1A1 (ag) 
 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correctly obtained 

    (iii) 
1 1
6 6

7
2

35 7
2 2

7
2

42 8

( ) (AC AB).AD ( ) 42 . 8

21 27

( ) 56 7( 8) ( 27)

( )

5

V p

p

p p

p

p

   
            
      

     

  

 

  

 

M1 
 
A1 ft 
 
 
M1 
 
A1 
 4

Appropriate scalar triple product 
 
In any form 
  
Evaluation of scalar triple product 
Dependent on previous M1 
1
6

(105 21 )p  or better 

   (iv) Intersect when 5p   

3 2 8 3

8 1 0 5

27 2 1 4

 
       
                
              

 

 

 

3 2 8 3

8 5 [ 8 ]

27 2 1 4 [ 27 2 1 ( 1) ]

p

p

 
   
   

  
   
      

 

 
 7 , 3    

Point of intersection is (17 , 15, 13)  

B1 
 
B1 ft  
M1 
 
 
A1 ft  
A1 ft 
 
 
M1  
A1 
 7

 
 
Equations of both lines (may involve p) 
Equation for intersection (must have 
different parameters) 
 
Equation involving and   

Second equation involving and   

or Two equations in , , p   
 
Obtaining or   
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2 

   2 (i) 2 2

2 2

2

g
( )e

g
( 2 2 )e

g
2 e

x y

x y

x y

y xy z
x

x xy z
y

z
z








  




  






 

M1 
A1 
 
A1 
 
 
A1 
 4

Partial differentiation 

     (ii) 
At (2, 1, 1) , 

g g g
4 , 4, 2

x y z

  
    

  
 

Normal has direction 

4

4

2

 
  
  

 

L passes through (2, 1, 1)  and has this direction 

M1 
A1 
 
 
M1 
 
 
A1 (ag) 
 4

 

    (iii) When 2g 0, 0xy z    
2

2

(2 2 )(1 2 ) ( 1 ) 0

3 3 0

1

  




     

 
 

 

1 gives P (0, 3, 0)   

 
1 gives Q(4, 1, 2)      

 
 
M1 
 
 
M1  
A1 (ag) 
 
A1 
 4

 
 
 
 
 
Obtaining a value of   
Or B1 for verifying g(0, 3, 0) 0  

          and showing that P is on L 

    (iv) 
At P, 6g g g

3e , 0, 0
x y z

  
  

  
 

6 6

g g g
g

3e ( 2 ) 0 0 6 e

x y z
x y z

   

  

  
  
  

     

 

 
M1 
  
M1 
 
A1 (ag) 
 3

OR give M2 A1 www for 

    
2 6 6 6

g( 2 , 3 2 , )

( 3 6 )e 6 e

  

    

 

    
 

     (v) When 6 61
6

6 e , eh h      

Point ( 2 , 3 2 , )     is approximately 

 6 6 61 1 1
3 3 6

( e , 3 e , e )h h h   

M1 
 
 
A1 (ag) 
 2

 

     (vi) 
At Q, 6 6 6g g g

e , 4e , 4e
x y z

  
    

  
 

When 4 2 , 1 2 , 2x y z           
6 6 6

6

g ( e )( 2 ) (4e )(2 ) ( 4e )( )

6 e

   



     


 

If 66 e h  , then 61
6

e h   

Point is approximately 

 6 6 61 1 1
3 3 6

( 4 e , 1 e , 2 e )h h h        

 
M1 
 
M1 
 
M1A1 
 
 
M1 
 
 
A2 
 7

 
 
 
 
OR give M1 M2 A1 www for 

    
2 6 6 6

g(4 2 , 1 2 , 2 )

( 3 6 )e 6 e

  

   

    

   
 

 
 
Give A1 for one coordinate correct 
 
If partial derivatives are not evaluated 
at Q, max mark is M0M1M0M0 
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3 

 

   3 (i) 1 1
2 21 1

2 2

d

d

y
x x

x
   

1 1
2 2

1 1
2 2

2
21 1

2 2

1 11 1 1 1 1 1
4 2 4 4 2 4

21 1
2 2

d
1 1 ( )

d

1

( )

y
x x

x

x x x x

x x



 



     
 

      

 

 

Arc length is 
1 1

2 21 1
2 2

0

( )d
a

x x x
 




 

                               

31
2 2

31
2 2

1
3

0

1
3

a

x x

a a

    

 

 

 
B1 
 
 
M1 
 
 
 
A1 
 
 
 
 
M1 
 
A1 (ag) 
 5

 

     (ii) Curved surface area is 2 dy s  

 

31 1 1
2 2 2 2

3
1 1 1
3 2 2

0

3
21 1 1

2 3 6
0

3
2 31 1 1

2 6 18
0

2 ( )( )d

2 ( )d

2

3

x x x x x

x x x

x x x









  

  

 
   

 









  

M1 
 
 
A1 
 
 
 
 
 
M1A1 
 
A1 
 5

For dy s  

 
Correct integral form including limits 
 
 
 
 
 
For 2 31 1 1

2 6 18
x x x   

    (iii) 
When 

d 3
4,

d 4

y
x

x
    

Unit normal vector is 
3
5
4
5

 
 
  

 

3 1
2 2

2
1 1
4 42

d 5
( )

32d

y
x x

x

       

 
3

223
1254 64

5 5
3232

1 ( ) 25
( )

( ) 2


 
  


 

3
5

2 4
3 5

4 25

2

  
          

c  

                         
1
2
2
3

3

10

 
    

 

 
B1 
 
M1 
A1 ft 
 
 
B1 
 
M1 
A1 ft 
 
  
M1 
 
 
A1  
A1 
 9

 
 
 
Finding a normal vector 
Correct unit normal (either direction) 
 
 
 
 
Applying formula for or   

    (iv) Differentiating partially w.r.t. p 

 

31
2 220 2

2

p x p x

p
x

 


 

Envelope is 
31

2 2
2 3

4 1 8

3
y x x

x x
   

            
3

2
4

3
y x

  

M1 
 
A1 
 
  
M1 
A1 
  
A1 
 5
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4 

 

   4 (i) 
1

1s t( ) s
1

1
( 1) 1

r( )

x
x xx

xx
x

x x
x

x x

     


 
  

 

 
1

1
t s( ) t

1
1

1
1 q( )

( 1)

x
x xx

xx
x

x
x x

x x


      


   

 

 

 
 
M1 
 
 
A1 (ag) 
 
 
 
M1 
 
  
A1 
 4

 

  p q r s t u  

 p p q r s t u  

 q q p s r u t  

 r r u p t s q  

 s s t q u r p  

 t t s u q p r  

     (ii) 

 u u r t p q s  

 
 
 
 
 
 
 
 
 
 
B3 
 3

 
 
 
 
 
 
 
 
 
 
Give B2 for 4 correct, B1 for 2 correct 

Element p q r s t u         (iii) 

Inverse p q r u t s     

 
B3 
 3

 
Give B2 for 4 correct, B1 for 2 correct 

   (iv) { p }, F  

{ p , q }, { p , r }, { p , t }  

{ p , s , u } 

 
B1B1B1  
B1 
 4

Ignore these in the marking 
Deduct one mark for each non-trivial 
subgroup in excess of four 

Element 1 1  3
j

e


 3
j

e
 2

3
j

e


 
2
3

j
e

   (v) 

Order 1 2 6 6 3 3 

 
 
B4 
 4

 
 
Give B3 for 4 correct, B2 for 3 correct 
         B1 for 2 correct 

   (vi) 1 2 3 4 5 62 2, 2 4, 2 8, 2 16, 2 13, 2      7  
7 8 9 10 11 122 14, 2 9, 2 , 2 17, 2 15, 2 11     18
13 14 15 16 17 182 3, 2 6, 2 12, 2 5, 2 10, 2 1       

Hence  2  has order 18 

M1 
 
A1 
 
 
A1 
 3

Finding (at least two) powers of 2 
 
For 6 92 7 and 2 18   

 
 
Correctly shown 
All powers listed implies final A1 

   (vii) G is abelian  (so all its subgroups are abelian) 
F is not abelian 

 
B1 
 1

Can have ‘cyclic’ instead of ‘abelian’ 

   (viii) Subgroup of order 6 is 3 6 9 12 15{1, 2 , 2 , 2 , 2 , 2 }  

   i.e. {1, 7 , 8, 11, 12, 18 }  

M1 
 
A1 
 2

 
 
or B2 
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5 

Pre-multiplication by transition matrix 

   5 (i) 

 

0.16 0.28 0.43 1

0.84 0 0 0

0 0.72 0 0

0 0 0.57 0

 
 
 
 
 
 

P  

 
 
 
B2 
 2

Allow tolerance of 0.0001  in 

probabilities throughout this question 
 
Give B1 for two columns correct 

     (ii) 

9

1 0.3349

0 0.3243

0 0.2231

0 0.1177

   
   
   
   
   
   

P           
Prob( ) 0.2231C 

 

M2 
 
  
A1 
 3

Using 9P  

Give M1 for using 10P  

    (iii) Week 5 

4

1 0.5020

0 0.2851

0 0.1577

0 0.0552

   
   
   
   
   
   

P  

B1 
 
M1  
A1 
 3

 
 
First column of a power of P  
SC  Give B0M1A1 for Week 9 and 
       0.3860  0.3098  0.2066  0.0976 

    (iv) 

7 8

. . . . . . . .

0.2869 . . . . . . .

. . . . . 0.2262 . .

. . . . . . . .

   
   
    
   
   
   

P P  

Probability is 0.2869 0.2262  
                                       0.0649  

 
  
M1M1 
 
 
M1 
A1 
 4

 
 

Elements from 7 8andP P  

 
 
Multiplying appropriate probabilities 

     (v) 
Expected run length is 

1
1.19

1 0.16



   (3 sf) 

M1 
A1 
 2

 
Allow  1.2 

    (vi) 

 

0.3585 0.3585 0.3585 0.3585

0.3011 0.3011 0.3011 0.3011

0.2168 0.2168 0.2168 0.2168

0.1236 0.1236 0.1236 0.1236

n

 
 
 
 
 
 

P  

 
    A: 0.3585   B: 0.3011   C: 0.2168   D: 0.1236 

M1 
 
 
 
M1 
 
A2 
 4

Evaluating with 10n n P  

or  Obtaining (at least) 3 equations 
     from Pp p  

Limiting matrix with equal columns 
or  Solving to obtain one equilib prob 
Give A1 for two correct 

   (vii) Expected number is 145 0.3585  
                                             52  

M1 
A1 ft 
 2

 

   (viii) 1 0.4 0.4

1 0 0 0 0.25 0.25

0 1 0 0 0.2 0.2

0 0 1 0 0.15 0.15

a b c

a

b

c

     
          
     
     

     

 

 
0.4 0.25 0.2 0.15 0.4

0.4(1 ) 0.25

0.25(1 ) 0.2

0.2(1 ) 0.15

a b c

a

b

c

   
 
 
 

 

 
0.375, 0.2, 0.25a b c    

 
 
M1 
A1 
 
 
M1 
 
 
 
  
A1 
 4

Transition matrix and 

0.4

0.25

0.2

0.15

 
 
 
 
 
 

 

 
Forming at least one equation 
Dependent on previous M1 
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6 

Post-multiplication by transition matrix 

   5 (i) 

 

0.16 0.84 0 0

0.28 0 0.72 0

0.43 0 0 0.57

1 0 0 0

 
 
 
 
 
 

P  

 
 
 
B2 
 2

Allow tolerance of 0.0001  in 

probabilities throughout this question 
 
Give B1 for two rows correct 

     (ii)  
 

91 0 0 0

0.3349 0.3243 0.2231 0.1177

P
 

                  Prob( ) 0.2231C   

M2 
 
 
 
A1 
 3

Using 9P  

Give M1 for using 10P  

    (iii) Week 5 

 
 

41 0 0 0

0.5020 0.2851 0.1577 0.0552

P
 

B1 
 
M1  
A1 
 3

 
 
First row of a power of P  
SC  Give B0M1A1 for Week 9 and 
       0.3860  0.3098  0.2066  0.0976 

    (iv) 

7 8

. 0.2869 . . . . . .

. . . . . . 0.2262 .

. . . . . . . .

. . . . . . . .

   
   
    
   
   
   

P P  

Probability is 0.2869 0.2262  
                                       0.0649  

 
  
M1M1 
 
 
M1 
A1 
 4

 
 

Elements from 7 8andP P  

 
 
Multiplying appropriate probabilities 

     (v) 
Expected run length is 

1
1.19

1 0.16



   (3 sf) 

M1 
A1 
 2

 
Allow  1.2 

    (vi) 

 

0.3585 0.3011 0.2168 0.1236

0.3585 0.3011 0.2168 0.1236

0.3585 0.3011 0.2168 0.1236

0.3585 0.3011 0.2168 0.1236

n

 
 
 
 
 
 

P  

 
    A: 0.3585   B: 0.3011   C: 0.2168   D: 0.1236 

M1 
 
 
 
M1 
 
A2 
 4

Evaluating with 10n n P  

or  Obtaining (at least) 3 equations 
     from p P p  

Limiting matrix with equal rows 
or  Solving to obtain one equilib prob 
Give A1 for two correct 

   (vii) Expected number is 145 0.3585  
                                             52  

M1 
A1 ft 
 2

 

   (viii) 

 

 

1 0 0

0 1 0
0.4 0.25 0.2 0.15

0 0 1

1 0 0 0

0.4 0.25 0.2 0.15

a a

b b

c c

 
  
 
 
 



 

 
0.4 0.25 0.2 0.15 0.4

0.4(1 ) 0.25

0.25(1 ) 0.2

0.2(1 ) 0.15

a b c

a

b

c

   
 
 
 

 

 
0.375, 0.2, 0.25a b c    

 
M1 
 
 
 
A1 
  
M1 
 
 
 
 
 
A1 
 4

 
Transition matrix and 
        0.4 0.25 0.2 0.15  

 
 
 
 
Forming at least one equation 
Dependent on previous M1 
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4757 Further Applications of Advanced 
Mathematics 

General comments 
The work on this paper was again of a high standard and about 40% of the candidates scored 
60 marks or more (out of 72). Many candidates produced substantially correct solutions to all 
three of their questions. The most popular combination of questions was questions 1, 2 and 4. 
Overall, questions 1 and 2 were each attempted by about 80% of the candidates, question 4 by 
about 60% and questions 3 and 5 were each attempted by about 40% of the candidates. 
 
 
Comments on individual questions 
1) (Vectors) 

There were very many good answers to this question. Most candidates used 
efficient methods to answer the four parts and applied the techniques 
competently, but arithmetic and algebraic slips were fairly frequent. In part (i), a 
common error was to use a scalar product instead of the vector product in the 

formula /×AC AB AB
  

. In part (iv), the point of intersection was almost 

always obtained correctly although it was not immediately obvious to all 
candidates, from the given result in part (ii), that the lines intersect when 5p = . 

  
2) (Multi-variable calculus) 

The partial differentiation was usually done accurately in part (i) then applied 
correctly to find the normal line in part (ii). Part (iii) was also answered well. In 
part (iv) it was expected that the partial derivatives at P would be used to find the 
approximate small change in g. However, most candidates substituted in to 
obtain g in terms of μ , and could then write down the linear approximation; this 
was perfectly acceptable, and a similar method could be used in part (vi). Most 
could see how part (v) followed from part (iv). Part (vi) invited candidates to 
repeat the work done in parts (iv) and (v) using Q instead of P, but a substantial 
number were unable to make any progress here. 

  
3) (Differential geometry) 

Most candidates could find the arc length in part (i) and the curved surface area 
in part (ii). The method for finding the centre of curvature in part (iii) was 
generally well understood, but the correct answer was quite rare. As well as 
arithmetic slips, sign errors were common, particularly going in the wrong 
direction along the normal. Finding a unit normal vector also caused some 
difficulty. In part (iv), most candidates were able to find the envelope correctly. 

  
4) (Groups) 

This question was answered very well indeed, and it was only the final part (viii) 
which caused any problems. Despite having expressed all the elements of G as 
powers of the generator 2 in part (vi), most candidates were unable to pick out 
the subgroup of order 6. 
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5) (Markov chains) 
This was found to be more difficult than the corresponding question last year. 
The techniques were generally well understood and calculators were used 
competently; parts (i), (ii), (vi), (vii) and (viii) were all answered very well. Many 
candidates were not sufficiently careful in part (iii), for example having found that 

4P  is the appropriate power, giving the answer as week 4 instead of week 5. 
Most could not answer part (iv) correctly; the usual error was to use elements 

from 7P  and 15P  instead of from 7P  and 8P . In part (v), many candidates used 
the formula / (1 )p p−  forgetting that, in this case, the first day of the run is to be 
included in the expected run length. 


